A Simple Estimator for Dynamic Models with Serially Correlated Unobservables∗

نویسندگان

  • Yingyao Hu
  • Matthew Shum
  • Wei Tan
چکیده

We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors’ prescription of pharmaceutical drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple estimator for the distribution of random coefficients

We propose a simple mixtures estimator for recovering the joint distribution of parameter heterogeneity in economic models, such as the random coefficients logit. The estimator is based on linear regression subject to linear inequality constraints, and is robust, easy to program, and computationally attractive compared to alternative estimators for random coefficient models. For complex structu...

متن کامل

Identifying Dynamic Games with Serially-Correlated Unobservables

In this paper we consider the nonparametric identification of Markov dynamic games models in which each firm has its own unobserved state variable, which is persistent over time. This class of models includes most models in the Ericson and Pakes (1995) and Pakes and McGuire (1994) framework. We provide conditions under which the joint Markov equilibrium process of the firms’ observed and unobse...

متن کامل

Asymptotic Properties of the Efficient Estimators for Cointegrating Regression Models with Serially Dependent Errors

In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s (1990) fully modified OLS estimator, Park’s (1992) canonical cointegrating regression estimator, and Saikkonen’s (1991) dynamic OLS estimator. First, by the Monte Carlo simulations, we demonstrate that these efficient methods do not work well when the regression error...

متن کامل

A Simple Nonparametric Estimator for the Distribution of Random Coefficients

We propose a simple nonparametric mixtures estimator for recovering the joint distribution of parameter heterogeneity in economic models, such as the random coefficients logit. The estimator is based on linear regression subject to linear inequality constraints, and is robust, easy to program, and computationally attractive compared to alternative estimators for random coefficient models. For c...

متن کامل

Interpolating Value Functions in Discrete Choice Dynamic Programming Models

Structural discrete choice dynamic programming models have been shown to be a valuable tool for analyzing a wide range of economic behavior. A major limitation on the complexity and applicability of these models is the computational burden associated with computing the high dimensional integrals that typically characterize an agent’s decision rules. This paper develops a regression based approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010